One mole of an ideal gas $\left( {\frac{{{C_p}}}{{{C_v}}} = Y} \right)$ heated by law $P = \alpha V$ where $P$ is pressure of gas, $V$ is volume, $\alpha $ is a constant. What is the molar heat capacity of gas in the process
$C = \frac{R}{{\gamma - 1}}$
$C = \frac{{\gamma R}}{{\gamma - 1}}$
$C = \frac{R}{2}\frac{{\left( {\gamma - 1} \right)}}{{\left( {\gamma + 1} \right)}}$
$C = \frac{R}{2}\frac{{\left( {\gamma + 1} \right)}}{{\left( {\gamma - 1} \right)}}$
A monoatomic ideal gas, initially at temperature $T_{1}$ is enclosed in a cylinder fitted with a frictionless piston. The gas is allowed to expand adiabatically to a temperature ${T}_{2}$ by releasing the piston suddenly. If $l_{1}$ and $l_{2}$ are the lengths of the gas column, before and after the expansion respectively, then the value of $\frac{T_{1}}{T_{2}}$ will be
The $P-V$ diagram of $2\,g$ of helium gas for a certain process $A\to B$ is shown in the figure. What is the heat given to the gas during the process $A \to B$?
A monoatomic ideal gas, initially at temperature $T_1$, is enclosed in a cylinder fitted with a frictionless piston. The gas is allowed to expand adiabatically to a temperature $T_2$ by releasing the piston suddenly. If $L_1$ and $L_2$ are the lengths of the gas column before and after expansion respectively, then $T_1/T_2$ is given by
An ideal gas is expanding such that $PT^2$ = constant. The coefficient of volume expansion of the gas is :-
The isothermal Bulk modulus of an ideal gas at pressure $P$ is